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INTEGRAL FORM OF THE GENERAL SOLUTION OF EQUATIONS OF 

STEADY+-ATE THE~OE~STIC~~* 

1U.D. KOPEIKIN and V.P. SHISHKIN 

A new integral formula is obtained for solving the equation of steady- 
state thermoelasticity in a three-dimensional region, differing from the 
well-known formula /l/ in containing no volume integsal. A similar 
formula is encountered in the case of a two-dimensional region, and its 
use in constructing the integral equation for boundary value problems is 
suggested. The fact that there are no volume integrals in the integral 
equations facilitates their numerical solution. If the temperature is 
represented by Green's formula in terms of the Newtonian potentials of 
the single and double layer, and the mass force is conservative, then, 
as shown below, the volume integrals will also be transformed into 
surface integrals over the boundary surface. The resulting formula 
however is less suitable for the numerical solution of boundary value 
problems as it contains a large number of integrals with different kernels. 

1. The differential equations of equilibrium of a thermoelastic medium written in terms 
of the displacements ui(i= i, 2,s) have the form 

3 a.3 aT 
PAu~+W-~),~~,, =----K 

I -2v at, i (1.1) 

Here % and h are Lame constants, E and Y is Young's modulus and Poisson's ratio, u is the 
coefficient of linear thermal expansion and Ki is the mass force density vector. The temp- 
erature T is sought in the form of the solution of an independent boundary value problem for 
the Laplace equation, and is assumed known. We write the solution of (1.1) in the form /l/ 
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Here z(E,.Q,xJ and #(ul.pI,ya) denote arbitrary points of the closed region 8,~~ are the 
direction cosines of the vector ri=yi--i (r is its modulus), ni are the direction cosines 
of the outward normal to the boundary S,(o is the angle between the vectorwith components 
rI and the normal, pi(g) are the stress vector components on the surface with normal {~if, &I= 

d~~d~*a~~ is the volume element of the region D,6*] is the Kronecker delta. We will write 
the Green identity for the function T and aria&Q as follows: 

(1.3) 
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The first term in the integrand on the left hand side of the identity (1.3) is propor- 
tional to the function 61 (2, y) = kA (Jr&j), k = (1 - .Zv)/I16rr~ (i -Y)), and the second term is equal to 
zero since the temperature 2' is harmonic. We can therefore rewrite (1.3) in the form 

(1.4) 

where Q is a biharmonic function (the sum of the potentials of the single and double layer). 
The right-hand side of (1.4) is a volume integral which appears in the integral representation 
(1.2). We note that the derivative (1.4) of the function @ is a particular solution of the 
equations of thermoelasticityinthe form /2; ~,~=i3@/&,. Using this representation in (l.l), 
we obtain 

Differentiating the expression for the function CD in the integrand we find that (1.5) 
becomes an identity and the temperature T can be represented by Green’s formula 

1 
T=x S( $f-T&(+))dS 

s 

Now we can replace the integral representation (1.2) by 

(1.7) 

aE 
16qb(l-v) 

where the volume integral of T is replaced by a boundary surface integral. 
The integral formula (1.7) contains a volume integral of mass force. Let us assume that 

the mass force ifi is conservative. 
Ki (y) = -J'y/Jyi 

and the Laplacian of the force function A'Y= m=const (this is the case for the gravitational 
forces in a homogeneous medium). Then, using Gauss's theorem we obtain 

Substituting the value of (1.8) into the integral formula (1.7), we obtain complete agreement 
with the formula given in /3/ without derivation. 

2. We assume that the Goodier potential 9, is obtained as a function of the coordinates 
zi, i.e. it is not necessarily represented in the form of the sum of biharmonic potentials 
of a single and double layer. We write the solution of (1.1) in the form 

ibi = UiO + UiT, & = auVazi (2.1) 

where uiD denotes the general part of the solution containing the arbitrary functions and uiT 
is a particular Goodier solution. The elements 031 of the stress tensor and components p, 
of the force vector have a form analogous to (2.1) 

Sij = aijo+ 3. T 
Zf ) Pi = Pi0 + PiT (2.2) 

The functions $lT, ptT appearing in (2.2) are obtained by differentiating the Goodier 
potential (using formulas known from the theory of elasticity /l/). We introduce the func- 

tions yT, oijT,piT as the elements of the basic state, and the Betti-Maize1 identity, and use 
the Kelvin solution as the elements of the auxilliary state. Then in place of (1.4) weobtain 

aE 
- T(Y)~~(‘.Y)~Y=~, I-2v s 

T(z)- 5 [piT (Y) ui, (~7 Y) - u,D (Y) pi,@. y)ldSv 
D s 

(2.3) 

Substituting the representation (2.3) into the integral formula (1.2) we obtain a new integral 
representation for the solution of thermoelastic equations not containing volume integrals 
of temperature. We note that (2.3) contains the elastic potentials of the single and double 
layer which can be combined with the analogous terms of (1.2). 
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The volume integral of mass forces Ki in (1.2) can also be representedasasumofintegrals 
over the boundary S of region D, in a form differing from (1.8). To do this we shall seek a 
particular solution of (1.1) when aF/ax~~O, by analogy with the Goodier solution, in the form 

UiK = aalazi (2.4) 

where lJ is a scalar function. The mass forces will be assumed, as before, to be conservative 

h'i = -avki 12.5) 

Substituting (2.4) and (2.5) into (l.l), we obtain 

When condition 

Y 

A”=h+ 

(2.6) 

(2.7) 

holds, (2.6) becomes an identity. Let us assume that a particular solution of (2.7) has been 
found. Then we can find the displacements uiK and forces pi' 

Substituting (2.8) into the integral formula (1.2) we obtain, at T=O , a new expreSSiOn 

(2.9) 

Formula (2.9) contains, like (2.3), the elastic potentials of the single and double layer, and 
this enables us to obtain a new integral formula of the theory of thermoelasticity 

ujfzf= [Pi*(Y)"~~(~,Y) s --ui*(Y)~,(zz YW$ 

s 

I$* = ui - UiT - I$ 
K 

( Pi* = Pi - Pi= - PiK 

analogous to the Somigliana formula. 

(2.10) 
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